Google Penguat (Amplifier) | Dark Wizard of Scientist

June 29, 2013

Penguat (Amplifier)

Penguat eksperimen dapat dilakukan dalam berbagai bentuk:keluaran tegangan dari rangkaian jembatan,sinyal frekuensi rangkaian pencacah,sinyal tegangan menunjukkan perubahan kapasitans dan sebagainya.Dalam banyak hal sinyal-sinyal relative lemah dan harus diamplikasi(diperkuat) agar dapat menggerakkan sesuatu piranti keluaran.penguat juga berbagai jenis.
Penguat (bahasa Inggris: Amplifier) adalah komponen elektronika yang dipakai untuk menguatkan daya (atau tenaga secara umum). Dalam bidang audio, amplifier akan menguatkan signal suara (yang telah dinyatakan dalam bentuk arus listrik) pada bagian inputnya menjadi arus listrik yang lebih kuat di bagian outputnya.

A.Penguat Instrumentasi


Penguat Instrumentasi adalah suatu penguat lingkar tertutup (closed loop) dengan masukan diferensial, dan penguatannya dapat diatur dengan menggunakan sebuah resistor variabel tanpa mempengaruhi CMRR. Fungsi utama suatu Penguat Instrumentasi adalah untuk memperkuat tegangan yang langsung berasal dari suatu sensor atau tranduser secara akurat.
Beberapa ciri khas dari suatu Penguat Instrumentasi :
- Drift rendah
- Common Mode Rejection Ratio (CMMR) tinggi
- Impedansi masukan tinggi (orde G clip_image002)
- Penguatan tinggi (lebih dari 100 kali)
Penguat instrumentasi adalah penguat tertutup, maka tidak perlu dipasang rangkaian umpan balik seperti halny dengan penguat operasional. Penguat instrumentasi dapat dibuat dengan menggunakan Op-Amp. Mutu penguat ini bergantung pada mutu Op-Amp yang digunakan, yang menyangkut offset masukan, drift pada tegangan keluaran CMMR, PSSR dan sebagainya.
Disamping itu CMMR dan ketepatan penguatan Op-Amp sangat bergantung kepada kepresisian komponen pasif (resistor) yang digunakan dan ada tidaknya tegangan offset pada Op-Amp.
Nilai hambatan resistor yang digunakan pada Penguat Instrumentasi sangat berpengaruh terhadap penguatan yang terjadi, sehingga apabila nilai hambatan resistor tidak presisi maka akan mengakibatkan adanya perbedaan pengukuran yang dilakukan dengan menggunakan dua persamaan di atas, seperti yang terjadi pada percobaan yang kami lakukan.

1.Penguat Diferensial

Mendesain sinyal level meter, histeresis pengatur suhu, osilator, pembangkit sinyal, penguat audio, penguat mic, filter aktif semisal tapis nada bass, mixer, konverter sinyal, integrator, differensiator, komparator dan sederet aplikasi lainnya, selalu pilihan yang mudah adalah dengan membolak-balik data komponen yang bernama op-amp. Komponen elektronika analog dalam kemasan IC (integrated circuits) ini memang adalah komponen serbaguna dan dipakai pada banyak aplikasi hingga sekarang. Hanya dengan menambah beberapa resitor dan potensiometer, dalam sekejap (atau dua kejap) sebuah pre-amp audio kelas B sudah dapat jadi dirangkai di atas sebuah proto-board.
Op-amp dinamakan juga dengan penguat diferensial (differential amplifier). Sesuai dengan istilah ini, op-amp adalah komponen IC yang memiliki 2 input tegangan dan 1 output tegangan, dimana tegangan output-nya adalah proporsional terhadap perbedaan tegangan antara kedua inputnya itu. Penguat diferensial seperti yang ditunjukkan pada gambar-1 merupakan rangkaian dasar dari sebuah op-amp.
gambar-1 : penguat diferensial
clip_image003
Pada rangkaian yang demikian, persamaan pada titik Vout adalah Vout = A(v1-v2) dengan A adalah nilai penguatan dari penguat diferensial ini.
Titik input v1 dikatakan sebagai input non-iverting, sebab tegangan vout satu phase dengan v1. Sedangkan sebaliknya titik v2 dikatakan input inverting sebab berlawanan phasa dengan tengangan vout.

Ø Penguat Diferensial Sebagai Dasar Penguat Operasional

Penguat diferensial adalah suatu penguat yang bekerja dengan memperkuat sinyal yang merupakan selisih dari kedua masukannya. Berikut ini adalah gambar skema dari penguat diferensial sederhana:
clip_image005
Penguat diferensial tersebut menggunakan komponen BJT (Bipolar Junction Transistor) yang identik / sama persis sebagai penguat. Pada penguat diferensial terdapat dua sinyal masukan (input) yaitu V1 dan V2. Dalam kondisi ideal, apabila kedua masukan identik (Vid = 0), maka keluaran Vod = 0. Hal ini disebabkan karena IB1 = IB2 sehingga IC1 = IC2 dan IE1 = IE2. Karena itu tegangan keluaran (VC1 dan VC2) harganya sama sehingga Vod = 0.
Apabila terdapat perbedaan antara sinyal V1 dan V2, maka Vid = V1 – V2. Hal ini akan menyebabkan terjadinya perbedaan antara IB1 dan IB2. Dengan begitu harga IC1 berbeda dengan IC2, sehingga harga Vod meningkat sesuai sesuai dengan besar penguatan Transistor.
Untuk memperbesar penguatan dapat digunakan dua tingkat penguat diferensial (cascade). Keluaran penguat diferensial dihubungkan dengan masukan penguat diferensial tingkatan berikutnya. Dengan begitu besar penguatan total (Ad) adalah hasil kali antara penguatan penguat diferensial pertama (Vd1) dan penguatan penguat diferensial kedua (Vd2).
Dalam penerapannya, penguat diferensial lebih disukai apabila hanya memiliki satu keluaran. Jadi yang diguankan adalah tegangan antara satu keluaran dan bumi (ground). Untuk dapat menghasilkan satu keluaran yang tegangannya terhadap bumi (ground) sama dengan tegangan antara dua keluaran (Vod), maka salah satu keluaran dari penguat diferensial tingkat kedua di hubungkan dengan suatu pengikut emitor (emitter follower).
Untuk memperoleh kinerja yang lebih baik, maka keluaran dari pengikut emiter dihubungkan dengan suatu konfigurasi yang disebut dengan totem-pole. Dengan menggunakan konfigurasi ini, maka tegangan keluaran X dapat berayun secara positif hingga mendekati harga VCC dan dapat berayun secara negatif hingga mendekati harga VEE.
Apabila seluruh rangkaian telah dihubungkan, maka rengkaian tersebut sudah dapat dikatakan sebagai penguat operasional (Operational Amplifier (Op Amp)). Penjelasan lebih lanjut mengenai hal ini akan dilakukan pada sub bab berikut.

Ø Diagram Op-amp

Op-amp di dalamnya terdiri dari beberapa bagian, yang pertama adalah penguat diferensial, lalu ada tahap penguatan (gain), selanjutnya ada rangkaian penggeser level (level shifter) dan kemudian penguat akhir yang biasanya dibuat dengan penguat push-pull kelas B. Gambar-2(a) berikut menunjukkan diagram dari op-amp yang terdiri dari beberapa bagian tersebut.
clip_image006
gambar-2 (a) : Diagram blok Op-Amp
clip_image007gambar-2 (b) : Diagram schematic simbol Op-Amp
Simbol op-amp adalah seperti pada gambar-2(b) dengan 2 input, non-inverting (+) dan input inverting (-). Umumnya op-amp bekerja dengan dual supply (+Vcc dan –Vee) namun banyak juga op-amp dibuat dengan single supply (Vcc ground). Simbol rangkaian di dalam op-amp pada gambar-2(b) adalah parameter umum dari sebuah op-amp. Rin adalah resitansi input yang nilai idealnya infinit (tak terhingga). Rout adalah resistansi output dan besar resistansi idealnya 0 (nol). Sedangkan AOL adalah nilai penguatan open loop dan nilai idealnya tak terhingga.
Saat ini banyak terdapat tipe-tipe op-amp dengan karakterisktik yang spesifik. Op-amp standard type 741 dalam kemasan IC DIP 8 pin sudah dibuat sejak tahun 1960-an. Untuk tipe yang sama, tiap pabrikan mengeluarkan seri IC dengan insial atau nama yang berbeda. Misalnya dikenal MC1741 dari motorola, LM741 buatan National Semiconductor, SN741 dari Texas Instrument dan lain sebagainya. Tergantung dari teknologi pembuatan dan desain IC-nya, karakteristik satu op-amp dapat berbeda dengan op-amp lain. Tabel-1 menunjukkan beberapa parameter op-amp yang penting beserta nilai idealnya dan juga contoh real dari parameter LM714.
tabel-1 : parameter op-amp yang penting
clip_image008

Ø Penguatan Open-loop

Op-amp idealnya memiliki penguatan open-loop (AOL) yang tak terhingga. Namun pada prakteknya op-amp semisal LM741 memiliki penguatan yang terhingga kira-kira 100.000 kali. Sebenarnya dengan penguatan yang sebesar ini, sistem penguatan op-amp menjadi tidak stabil. Input diferensial yang amat kecil saja sudah dapat membuat outputnya menjadi saturasi. Pada bab berikutnya akan dibahas bagaimana umpan balik bisa membuat sistem penguatan op-amp menjadi stabil.

Ø Unity-gain frequency

Op-amp ideal mestinya bisa bekerja pada frekuensi berapa saja mulai dari sinyal dc sampai frekuensi giga Herzt. Parameter unity-gain frequency menjadi penting jika op-amp digunakan untuk aplikasi dengan frekuensi tertentu. Parameter AOL biasanya adalah penguatan op-amp pada sinyal DC. Response penguatan op-amp menurun seiring dengan menaiknya frekuenci sinyal input. Op-amp LM741 misalnya memiliki unity-gain frequency sebesar 1 MHz. Ini berarti penguatan op-amp akan menjadi 1 kali pada frekuensi 1 MHz. Jika perlu merancang aplikasi pada frekeunsi tinggi, maka pilihlah op-amp yang memiliki unity-gain frequency lebih tinggi.

Ø Slew rate

Di dalam op-amp kadang ditambahkan beberapa kapasitor untuk kompensasi dan mereduksi noise. Namun kapasitor ini menimbulkan kerugian yang menyebabkan response op-amp terhadap sinyal input menjadi lambat. Op-amp ideal memiliki parameter slew-rate yang tak terhingga. Sehingga jika input berupa sinyal kotak, maka outputnya juga kotak. Tetapi karena ketidak idealan op-amp, maka sinyal output dapat berbentuk ekponensial. Sebagai contoh praktis, op-amp LM741 memiliki slew-rate sebesar 0.5V/us. Ini berarti perubahan output op-amp LM741 tidak bisa lebih cepat dari 0.5 volt dalam waktu 1 us.

Ø Parameter CMRR

Ada satu parameter yang dinamakan CMRR (Commom Mode Rejection Ratio). Parameter ini cukup penting untuk menunjukkan kinerja op-amp tersebut. Op-amp
dasarnya adalah penguat diferensial dan mestinya tegangan input yang dikuatkan hanyalah selisih tegangan antara input v1 (non-inverting) dengan input v2 (inverting). Karena ketidak-idealan op-amp, maka tegangan persamaan dari kedua input ini ikut juga dikuatkan. Parameter CMRR diartikan sebagai kemampuan op-amp untuk menekan penguatan tegangan ini (common mode) sekecil-kecilnya. CMRR didefenisikan dengan rumus CMRR = ADM/ACM yang dinyatakan dengan satuan dB. Contohnya op-amp dengan CMRR = 90 dB, ini artinya penguatan ADM (differential mode) adalah kira-kira 30.000 kali dibandingkan penguatan ACM (commom mode). Kalau CMRR-nya 30 dB, maka artinya perbandingannya kira-kira hanya 30 kali. Kalau diaplikasikan secara real, misalkan tegangan input v1 = 5.05 volt dan tegangan v2 = 5 volt, maka dalam hal ini tegangan diferensialnya (differential mode) = 0.05 volt dan tegangan persamaan-nya (common mode) adalah 5 volt. Pembaca dapat mengerti dengan CMRR yang makin besar maka op-amp diharapkan akan dapat menekan penguatan sinyal yang tidak diinginkan (common mode) sekecil-kecilnya. Jika kedua pin input dihubung singkat dan diberi tegangan, maka output op-amp mestinya nol. Dengan kata lain, op-amp dengan CMRR yang semakin besar akan semakin baik.

Ø Penutup bagian ke-satu

LM714 termasuk jenis op-amp yang sering digunakan dan banyak dijumpai dipasaran. Contoh lain misalnya TL072 dan keluarganya sering digunakan untuk penguat audio. Tipe lain seperti LM139/239/339 adalah opamp yang sering dipakai sebagai komparator. Di pasaran ada banyak tipe op-amp. Cara yang paling baik pada saat mendesain aplikasi dengan op-amp adalah dengan melihat dulu karakteristik op-amp tersebut. Saat ini banyak op-amp yang dilengkapi dengan kemampuan seperti current sensing, current limmiter, rangkaian kompensasi temperatur dan lainnya. Ada juga op-amp untuk aplikasi khusus seperti aplikasi frekuesi tinggi, open colector output, high power output dan lain sebagainya.
Operational Amplifier atau di singkat op-amp merupakan salah satu komponen analog yang popular digunakan dalam berbagai aplikasi rangkaian elektronika. Aplikasi op-amp popular yang paling sering dibuat antara lain adalah rangkaian inverter, non-inverter, integrator dan differensiator. Pada pokok bahasan kali ini akan dipaparkan beberapa aplikasi op-amp yang paling dasar, dimana rangkaian feedback (umpan balik) negatif  memegang peranan penting. Secara umum, umpanbalik positif akan menghasilkan osilasi sedangkan umpanbalik negatif menghasilkan penguatan yang dapat terukur.

Ø Op-amp ideal

Op-amp pada dasarnya adalah sebuah differential amplifier (penguat diferensial) yang memiliki dua masukan. Input (masukan) op-amp seperti yang telah dimaklumi ada yang dinamakan input inverting dan non-inverting. Op-amp ideal memiliki open loop gain (penguatan loop terbuka) yang tak terhingga besarnya. Seperti misalnya op-amp LM741 yang sering digunakan oleh banyak praktisi elektronika, memiliki karakteristik tipikal open loop gain sebesar 104 ~ 105. Penguatan yang sebesar ini membuat op-amp menjadi tidak stabil, dan penguatannya menjadi tidak terukur (infinite). Disinilah peran rangkaian negative feedback (umpanbalik negatif) diperlukan, sehingga op-amp dapat dirangkai menjadi aplikasi dengan nilai penguatan yang terukur (finite). Impedasi input op-amp ideal mestinya adalah tak terhingga, sehingga mestinya arus input pada tiap masukannya adalah 0. Sebagai perbandingan praktis, op-amp LM741 memiliki impedansi input  Zin = 106 Ohm. Nilai impedansi ini masih relatif sangat besar sehingga arus input op-amp LM741 mestinya sangat kecil.
Ada dua aturan penting dalam melakukan analisa rangkaian op-amp berdasarkan karakteristik op-amp ideal. Aturan ini dalam beberapa literatur dinamakan golden rule, yaitu :
Aturan 1 : Perbedaan tegangan antara input v+ dan v- adalah nol (v+ - v- = 0 atau v+ = v- )
Aturan 2 : Arus pada input Op-amp adalah nol (i+ = i- = 0)
Inilah dua aturan penting op-amp ideal yang digunakan untuk menganalisa rangkaian op-amp.

2.Penguat Operasional

Penguat operasional (Op Amp) adalah suatu rangkaian terintegrasi yang berisi beberapa tingkat dan konfigurasi penguat diferensial yang telah dijelaskan di atas. Penguat operasional memilki dua masukan dan satu keluaran serta memiliki penguatan DC yang tinggi. Untuk dapat bekerja dengan baik, penguat operasional memerlukan tegangan catu yang simetris yaitu tegangan yang berharga positif (+V) dan tegangan yang berharga negatif (-V) terhadap tanah (ground). Berikut ini adalah simbol dari penguat operasional:
clip_image009
Ø Karakteristik Ideal Penguat Operasional
Penguat operasional banyak digunakan dalam berbagai aplikasi karena beberapa keunggulan yang dimilikinya, seperti penguatan yang tinggi, impedansi masukan yang tinggi, impedansi keluaran yang rendah dan lain sebagainya. Berikut ini adalah karakteristik dari Op Amp ideal:
      Penguatan tegangan lingkar terbuka (open-loop voltage gain) AVOL = ¥-
      Tegangan ofset keluaran (output offset voltage) VOO = 0
      Hambatan masukan (input resistance) RI = ¥
      Hambatan keluaran (output resistance) RO = 0
      Lebar pita (band width) BW = ¥
      Waktu tanggapan (respon time) = 0 detik
      Karakteristik tidak berubah dengan suhu
Kondisi ideal tersebut hanya merupakan kondisi teoritis tidak mungkun dapat dicapai dalam kondisi praktis. Tetapi para pembuat Op Amp berusaha untuk membuat Op Amp yang memiliki karakteristik mendekati kondisi-kondisi di atas. Karena itu sebuah Op Amp yang baik harus memiliki karakteristik yang mendekati kondisi ideal. Berikut ini akan dijelaskan satu persatu tentang kondisi-kondisi ideal dari Op Amp.

Ø Penguatan Tegangan Lingkar Terbuka

Penguatan tegangan lingkar terbuka (open loop voltage gain) adalah penguatan diferensial Op Amp pada kondisi dimana tidak terdapat umpan balik (feedback) yang diterapkan padanya seberti yang terlihat pada gambar 2.2. Secara ideal, penguatan tegangan lingkar terbuka adalah:
AVOL = Vo / Vid = - ¥
AVOL = Vo/(V1-V2) = - ¥
Tanda negatif menandakan bahwa tegangan keluaran VO berbeda fasa dengan tegangan masukan Vid. Konsep tentang penguatan tegangan tak berhingga tersebut sukar untuk divisualisasikan dan tidak mungkin untuk diwujudkan. Suatu hal yang perlu untuk dimengerti adalah bahwa tegangan keluaran VO jauh lebih besar daripada tegangan masukan Vid. Dalam kondisi praktis, harga AVOL adalah antara 5000 (sekitar 74 dB) hingga 100000 (sekitar 100 dB).
Tetapi dalam penerapannya tegangan keluaran VO tidak lebih dari tegangan catu yang diberikan pada Op Amp. Karena itu Op Amp baik digunakan untuk menguatkan sinyal yang amplitudonya sangat kecil.

Ø Tegangan Ofset Keluaran

Tegangan ofset keluaran (output offset voltage) VOO adalah harga tegangan keluaran dari Op Amp terhadap tanah (ground) pada kondisi tegangan masukan Vid = 0. Secara ideal, harga VOO = 0 V. Op Amp yang dapat memenuhi harga tersebut disebut sebagai Op Amp dengan CMR (common mode rejection) ideal.
Tetapi dalam kondisi praktis, akibat adanya ketidakseimbangan dan ketidakidentikan dalam penguat diferensial dalam Op Amp tersebut, maka tegangan ofset VOO biasanya berharga sedikit di atas 0 V. Apalagi apabila tidak digunakan umpan balik maka harga VOO akan menjadi cukup besar untuk menimbulkan saturasi pada keluaran. Untuk mengatasi hal ini, maka perlu diterapakan tegangan koreksi pada Op Amp. Hal ini dilakukan agar pada saat tegangan masukan Vid = 0, tegangan keluaran VO juga = 0. Apabila hal ini tercapai,

Ø Hambatan Masukan

Hambatan masukan (input resistance) Ri dari Op Amp adalah besar hambatan di antara kedua masukan Op Amp. Secara ideal hambatan masukan Op Amp adalah tak berhingga. Tetapi dalam kondisi praktis, harga hambatan masukan Op Amp adalah antara 5 kW hingga 20 MW, tergantung pada tipe Op Amp. Harga ini biasanya diukur pada kondisi Op Amp tanpa umpan balik. Apabila suatu umpan balik negatif (negative feedback) diterapkan pada Op Amp, maka hambatan masukan Op Amp akan meningkat.
Dalam suatu penguat, hambatan masukan yang besar adalah suatu hal yang diharapkan. Semakin besar hambatan masukan suatu penguat, semakin baik penguat tersebut dalam menguatkan sinyal yang amplitudonya sangat kecil. Dengan hambatan masukan yang besar, maka sumber sinyal masukan tidak terbebani terlalu besar.

Ø Hambatan Keluaran

Hambatan Keluaran (output resistance) RO dari Op Amp adalah besarnya hambatan dalam yang timbul pada saat Op Amp bekerja sebagai pembangkit sinyal. Secara ideal harga hambatan keluaran RO Op Amp adalah = 0. Apabula hal ini tercapai, maka seluruh tegangan keluaran Op Amp akan timbul pada beban keluaran (RL), sehingga dalam suatu penguat, hambatan keluaran yang kecil sangat diharapkan.
Dalam kondisi praktis harga hambatan keluaran Op Amp adalah antara beberapa ohm hingga ratusan ohm pada kondisi tanpa umpan balik. Dengan diterapkannya umpan balik, maka harga hambatan keluaran akan menurun hingga mendekati kondisi ideal.

Ø Lebar Pita

Lebar pita (band width) BW dari Op Amp adalah lebar frekuensi tertentu dimana tegangan keluaran tidak jatuh lebih dari 0,707 dari harga tegangan maksimum pada saat amplitudo tegangan masukan konstan. Secara ideal, Op Amp memiliki lebar pita yang tak terhingga. Tetapi dalam penerapannya, hal ini jauh dari kenyataan.
Sebagian besar Op Amp serba guan memiliki lebar pita hingga 1 MHz dan biasanya diterapkan pada sinyal dengan frekuensi beberapa kiloHertz. Tetapi ada juga Op Amp yang khusus dirancang untuk bekerja pada frekuensi beberapa MegaHertz. Op Amp jenis ini juga harus didukung komponen eksternal yang dapat mengkompensasi frekuensi tinggi agar dapat bekerja dengan baik.

Ø Waktu Tanggapan

Waktu tanggapan (respon time) dari Op Amp adalah waktu yang diperlukan oleh keluaran untuk berubah setelah masukan berubah. Secara ideal harga waktu respon Op Amp adalah = 0 detik, yaitu keluaran harus berubah langsung pada saat masukan berubah.
Tetapi dalam prakteknya, waktu tanggapan dari Op Amp memang cepat tetapi tidak langsung berubah sesuai masukan. Waktu tanggapan Op Amp umumnya adalah beberapa mikro detik hal ini disebut juga slew rate. Perubahan keluaran yang hanya beberapa mikrodetik setelah perubahan masukan tersebut umumnya disertai dengan oveshoot yaitu lonjakan yang melebihi kondisi steady state. Tetapi pada penerapan biasa, hal ini dapat diabaikan.

Ø Karakteristik Terhadap Suhu

Sebagai mana diketahui, suatu bahan semikonduktor yang akan berubah karakteristiknya apabila terjadi perubahan suhu yang cukup besar. Pada Op Amp yang ideal, karakteristiknya tidak berubah terhadap perubahan suhu. Tetapi dalam prakteknya, karakteristik sebuah Op Amp pada umumnya sedikit berubah, walaupun pada penerapan biasa, perubahan tersebut dapat diabaikan.

3.Inverting amplifier

Rangkaian dasar penguat inverting adalah seperti yang ditunjukkan pada gambar 1, dimana sinyal masukannya dibuat melalui input inverting.

gambar 1 : penguat inverter
clip_image010
Input inverting pada rangkaian ini dihubungkan ke ground, atau v+ = 0. Dengan mengingat dan menimbang aturan 1 (lihat aturan 1), maka akan dipenuhi v- = v+ = 0. Karena nilainya = 0 namun tidak terhubung langsung ke ground, input op-amp v- pada rangkaian ini dinamakan virtual ground. Dengan fakta ini, dapat dihitung tegangan jepit pada R1 adalah vin – v- = vin dan tegangan jepit pada reistor R2 adalah vout – v- = vout. Kemudian dengan menggunakan aturan 2, di ketahui bahwa :
iin + iout = i- = 0, karena menurut aturan 2, arus masukan op-amp adalah 0.
iin + iout = vin/R1 + vout/R2 = 0
Selanjutnya
vout/R2 = - vin/R1 .... atau
vout/vin = - R2/R1
Jika penguatan G didefenisikan sebagai perbandingan tegangan keluaran terhadap tegangan masukan, maka dapat ditulis
clip_image011 …(1)
Impedansi rangkaian inverting didefenisikan sebagai impedansi input dari sinyal masukan terhadap ground. Karena input inverting (-) pada rangkaian ini diketahui adalah 0 (virtual ground) maka impendasi rangkaian ini tentu saja adalah Zin = R1.

4.Non-Inverting amplifier

Prinsip utama rangkaian penguat non-inverting adalah seperti yang diperlihatkan pada gambar 2 berikut ini. Seperti namanya, penguat ini memiliki masukan yang dibuat melalui input non-inverting. Dengan demikian tegangan keluaran rangkaian ini akan satu fasa dengan tegangan inputnya. Untuk menganalisa rangkaian penguat op-amp non inverting, caranya sama seperti menganalisa rangkaian inverting.
clip_image012





gambar 2 : penguat non-inverter
Dengan menggunakan aturan 1 dan aturan 2, kita uraikan dulu beberapa fakta yang ada, antara lain :
vin = v+
v+ = v- = vin ..... lihat aturan 1.
Dari sini ketahui tegangan jepit pada R2 adalah vout – v- = vout – vin, atau iout = (vout-vin)/R2. Lalu tegangan jepit pada R1 adalah v- = vin, yang berarti arus iR1 = vin/R1.
Hukum kirchkof pada titik input inverting merupakan fakta yang mengatakan bahwa :
iout + i(-) = iR1
Aturan 2 mengatakan bahwa i(-) = 0 dan jika disubsitusi ke rumus yang sebelumnya, maka diperoleh
iout = iR1 dan Jika ditulis dengan tegangan jepit masing-masing maka diperoleh
(vout – vin)/R2 = vin/R1 yang kemudian dapat disederhanakan menjadi :
vout = vin (1 + R2/R1)
Jika penguatan G adalah perbandingan tegangan keluaran terhadap tegangan masukan, maka didapat penguatan op-amp non-inverting :
clip_image013… (2)
Impendasi untuk rangkaian Op-amp non inverting adalah impedansi dari input non-inverting op-amp tersebut. Dari datasheet, LM741 diketahui memiliki impedansi input Zin = 108 to 1012 Ohm.

DAFTAR PUSTAKA

Frank,D,Petruzella.2001.Elektronik Industri.Penerbit Andi.Jogjakarta
http://zone.ni.com/cms/fisika elektronika/devzone/tut/g/22c53ee810.gif).
http://wikipedia.com
Holman.J.P.1985.Metode Pengukuran Teknik.Erlangga.Jakarta

Judul : Penguat (Amplifier)
Disusun Oleh : Chandra H | Melva P | Silvia M S | Yogi L. Raja
Technorati Tags: ,,,,Sains,Fisika
logo fmipa unimed
Share this post

1 comments

  1. :) waduh ... cocok neh di jadikan catatan kaki atau Daftar pustaka , artekalnya lumayan panjang , sangat bermanfaat ,makasih gan .. cuman kalau boleh nanya ,boleh kaga kita ngambil cuplikan di sini ,kalau di ijinin kalau kaga ya kaga papa , ane hargai karya orang lain ,hatur nuwun ya min

    ReplyDelete

Comment & suggestion....

:) :-) :)) =)) :( :-( :(( :d :-d @-) :p :o :>) (o) [-( :-? (p) :-s (m) 8-) :-t :-b b-( :-# =p~ :-$ (b) (f) x-) (k) (h) (c) cheer

 
© 2013 Dark Wizard of Scientist
Original Designed by BlogThietKe Cooperated with Duy Pham
Released under Creative Commons 3.0 CC BY-NC 3.0
Posts RSS Comments RSS
Back to top